Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Cell Chem Biol ; 31(1): 53-70, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909035

RESUMO

G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.


Assuntos
Quadruplex G , RNA , RNA/genética , RNA/química , DNA/química , RNA não Traduzido/genética
2.
Allergy ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055191

RESUMO

Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.

3.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004392

RESUMO

Auger electrons can cause nanoscale physiochemical damage to specific DNA sites that play a key role in cancer cell survival. Radio-Pt is a promising Auger-electron source for damaging DNA efficiently because of its ability to bind to DNA. Considering that the cancer genome is maintained under abnormal gene amplification and expression, here, we developed a novel 191Pt-labeled agent based on pyrrole-imidazole polyamide (PIP), targeting the oncogene MYCN amplified in human neuroblastoma, and investigated its targeting ability and damaging effects. A conjugate of MYCN-targeting PIP and Cys-(Arg)3-coumarin was labeled with 191Pt via Cys (191Pt-MYCN-PIP) with a radiochemical purity of >99%. The binding potential of 191Pt-MYCN-PIP was evaluated via the gel electrophoretic mobility shift assay, suggesting that the radioagent bound to the DNA including the target sequence of the MYCN gene. In vitro assays using human neuroblastoma cells showed that 191Pt-MYCN-PIP bound to DNA efficiently and caused DNA damage, decreasing MYCN gene expression and MYCN signals in in situ hybridization analysis, as well as cell viability, especially in MYCN-amplified Kelly cells. 191Pt-MYCN-PIP also induced a substantial increase in cytosolic dsDNA granules and generated proinflammatory cytokines, IFN-α/ß, in Kelly cells. Tumor uptake of intravenously injected 191Pt-MYCN-PIP was low and its delivery to tumors should be improved for therapeutic application. The present results provided a potential strategy, targeting the key oncogenes for cancer survival for Auger electron therapy.

4.
Cereb Cortex ; 33(22): 11070-11079, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815245

RESUMO

Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Adolescente , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia
5.
Front Biosci (Landmark Ed) ; 28(9): 224, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37796712

RESUMO

BACKGROUND: Considering the remarkable heterogeneity of biological features of renal cell carcinoma (RCC), the current clinical classification that only relies on classic clinicopathological features is in urgent need of improvement. Herein, we aimed to conduct DNA methylation modification patterns in RCC. METHODS: We retrospectively curated multiple RCC cohorts, comprising TCGA-KIRC, TCGA-KICH, TCGA-KIRP, and E-MTAB-1980. DNA methylation modification patterns were proposed with an unsupervised clustering algorithm based on 20 DNA methylation regulators. Immunological features were characterized using tumor-infiltrating immune cells and immunomodulators. Sensitivity to immuno- or targeted therapy was estimated with submap and Genomics of Drug Sensitivity in Cancer (GDSC). DNA methylation score (DMS) was developed with principal component analysis. RESULTS: Three DNA methylation modification patterns were conducted across RCC patients, namely C1, C2 and C3. Among them, C3 displayed the most remarkable survival advantage. The three patterns presented in agreement with immune phenotypes: immune-desert, immune-excluded, and immune-inflamed, respectively. These patterns displayed distinct responses to anti-PD-1 and targeted drugs. DMS enabled the quantification of DNA methylation status individually as an alternative tool for prognostic estimation. CONCLUSIONS: The DNA methylation molecular patterns we proposed are an innovative complement to the traditional classification of RCC, which might contribute to precision medicine.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Metilação de DNA , Estudos Retrospectivos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética
6.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707954

RESUMO

Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.


Assuntos
Doença de Huntington , Distrofia Miotônica , Humanos , Animais , Camundongos , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Nylons/farmacologia , Distrofia Miotônica/genética , Repetições de Trinucleotídeos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , DNA , Imidazóis/farmacologia
7.
Cell Death Dis ; 14(9): 642, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773170

RESUMO

Differentiation therapy has been proposed as a promising therapeutic strategy for acute myeloid leukemia (AML); thus, the development of more versatile methodologies that are applicable to a wide range of AML subtypes is desired. Although the FOXOs transcription factor represents a promising drug target for differentiation therapy, the efficacy of FOXO inhibitors is limited in vivo. Here, we show that pharmacological inhibition of a common cis-regulatory element of forkhead box O (FOXO) family members successfully induced cell differentiation in various AML cell lines. Through gene expression profiling and differentiation marker-based CRISPR/Cas9 screening, we identified TRIB1, a complement of the COP1 ubiquitin ligase complex, as a functional FOXO downstream gene maintaining an undifferentiated status. TRIB1 is direct target of FOXO3 and the FOXO-binding cis-regulatory element in the TRIB1 promoter, referred to as the FOXO-responsive element in the TRIB1 promoter (FRE-T), played a critical role in differentiation blockade. Thus, we designed a DNA-binding pharmacological inhibitor of the FOXO-FRE-T interface using pyrrole-imidazole polyamides (PIPs) that specifically bind to FRE-T (FRE-PIPs). The FRE-PIPs conjugated to chlorambucil (FRE-chb) inhibited transcription of TRIB1, causing differentiation in various AML cell lines. FRE-chb suppressed the formation of colonies derived from AML cell lines but not from normal counterparts. Administration of FRE-chb inhibited tumor progression in vivo without remarkable adverse effects. In conclusion, targeting cis-regulatory elements of the FOXO family is a promising therapeutic strategy that induces AML cell differentiation.

8.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764241

RESUMO

The multimolecular assembly of three-dimensionally structured proteins forms their quaternary structures, some of which have high geometric symmetry. The size and complexity of protein quaternary structures often increase in a hierarchical manner, with simpler, smaller structures serving as units for larger quaternary structures. In this study, we exploited oligomerization of a ribozyme cyclic trimer to achieve larger ribozyme-based RNA assembly. By installing kissing loop (KL) interacting units to one-, two-, or three-unit RNA molecules in the ribozyme trimer, we constructed dimers, open-chain oligomers, and branched oligomers of ribozyme trimer units. One type of open-chain oligomer preferentially formed a closed tetramer containing 12 component RNAs to provide 12 ribozyme units. We also observed large assembly of ribozyme trimers, which reached 1000 nm in size.

9.
J Med Chem ; 66(17): 12059-12068, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37606185

RESUMO

The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.


Assuntos
Nylons , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Nylons/farmacologia , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição , Neoplasias Pancreáticas/tratamento farmacológico , Imidazóis , DNA , Pirróis/farmacologia , Pirróis/uso terapêutico , Neoplasias Pancreáticas
10.
Nat Nanotechnol ; 18(11): 1311-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37524905

RESUMO

Thermal annealing is usually needed to direct the assembly of multiple complementary DNA strands into desired entities. We show that, with a magnesium-free buffer containing NaCl, complex cocktails of DNA strands and proteins can self-assemble isothermally, at room or physiological temperature, into user-defined nanostructures, such as DNA origamis, single-stranded tile assemblies and nanogrids. In situ, time-resolved observation reveals that this self-assembly is thermodynamically controlled, proceeds through multiple folding pathways and leads to highly reconfigurable nanostructures. It allows a given system to self-select its most stable shape in a large pool of competitive DNA strands. Strikingly, upon the appearance of a new energy minimum, DNA origamis isothermally shift from one initially stable shape to a radically different one, by massive exchange of their constitutive staple strands. This method expands the repertoire of shapes and functions attainable by isothermal self-assembly and creates a basis for adaptive nanomachines and nanostructure discovery by evolution.


Assuntos
Nanoestruturas , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Temperatura
11.
Nanoscale ; 15(25): 10749-10754, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37323018

RESUMO

Herein, we report on the construction of Cu-histidine (His)-DNA hybrids as laccase-mimetic DNAzymes. Cu-His-DNAzymes showed remarkable activity in a colorimetric oxidation reaction between 2,4-dichlorophenol and 4-aminoantipyrine. Our results provide new insights for the systematic construction of tailor-made active sites for biomimetics.


Assuntos
DNA Catalítico , DNA Catalítico/química , Histidina/química , Lacase/química , Biomimética , DNA/química , Cobre/química
12.
Methods Mol Biol ; 2639: 83-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166712

RESUMO

Molecular self-assembly has attracted much attention as a method to create novel supramolecular architectures. The scaffolded DNA origami method has enabled the construction of almost arbitrarily shaped DNA nanostructures, which can be further used as components of higher-order architectures. Here, we describe a method to construct and visualize two-dimensional (2D) lattices self-assembled from DNA origami tiles on lipid bilayer membranes. The weak adsorption of DNA origami tiles onto the mica-supported lipid bilayer allows their lateral diffusion along the surface, facilitating interactions among the tiles to assemble and form large 2D lattices. Depending on the design (i.e., shape, size, and interactions with each other) of DNA origami tiles, a variety of 2D lattices made of DNA are constructed.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos
13.
Nucleic Acids Res ; 51(11): 5634-5646, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158237

RESUMO

In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.


Assuntos
Bacteriófago lambda , DNA Viral , Empacotamento do Genoma Viral , Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Capsídeo/metabolismo
14.
Methods Mol Biol ; 2651: 241-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892772

RESUMO

To study the physical properties of molecules and their reaction processes, direct visualization of target molecules is one of the straightforward methods. Atomic force microscopy (AFM) enables the direct imaging of biomolecules under physiological conditions at nanometer-scale spatial resolution. In addition, using the DNA origami technology, the precise placement of target molecules in a designed nanostructure has been achieved, and the detection of the molecules at the single-molecule level has been realized. DNA origami is applied for visualizing the detailed movement of molecules combining with high-speed AFM (HS-AFM), which enables the analysis of the dynamic movement of biomolecules in a subsecond time resolution.Here, we describe the combination of the DNA origami system with HS-AFM for the imaging of rotation of dsDNA originated from B-Z transition. The rotation of dsDNA during B-Z transition is directly visualized in a DNA origami using the HS-AFM. These target-oriented observation systems serve to the detailed analysis of DNA structural changes in real time at molecular resolution.


Assuntos
DNA , Nanoestruturas , Microscopia de Força Atômica/métodos , DNA/química , Nanotecnologia/métodos , Nanoestruturas/química
16.
Rev Sci Instrum ; 94(1): 013102, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725569

RESUMO

Demonstration tests of the alignment of Fresnel zone plate focusing optics using a full-field x-ray microscope and microbeam x-ray diffraction measurements combined with the full-field x-ray microscope were performed. It was confirmed that the full-field x-ray microscope enables direct two-dimensional observation of a microbeam with sub-micrometer spatial resolution. This allowed visualization of the misalignment of the focusing optics, resulting in accurate alignment of the optics within a short time. In addition, the microscope could be used to observe the sample as well as the microbeam, which enabled clarification of the position and two-dimensional shape of the microbeam on the sample. This realized a measurement procedure that a 100-µm-size sample was imaged with sub-micrometer spatial resolution, and then, microbeam-use measurements were performed for only the region of interest determined by the microscope, which has been difficult with conventional microbeam applications. The combination of observations by a full-field x-ray microscope and measurements using a microbeam is expected to open a new style of measurement.

17.
Sci Adv ; 9(8): eade2035, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827365

RESUMO

Consecutive guanine RNA sequences can adopt quadruple-stranded structures, termed RNA G-quadruplexes (rG4s). Although rG4-forming sequences are abundant in transcriptomes, the physiological roles of rG4s in the central nervous system remain poorly understood. In the present study, proteomics analysis of the mouse forebrain identified DNAPTP6 as an RNA binding protein with high affinity and selectivity for rG4s. We found that DNAPTP6 coordinates the assembly of stress granules (SGs), cellular phase-separated compartments, in an rG4-dependent manner. In neurons, the knockdown of DNAPTP6 diminishes the SG formation under oxidative stress, leading to synaptic dysfunction and neuronal cell death. rG4s recruit their mRNAs into SGs through DNAPTP6, promoting RNA self-assembly and DNAPTP6 phase separation. Together, we propose that the rG4-dependent phase separation of DNAPTP6 plays a critical role in neuronal function through SG assembly.


Assuntos
Quadruplex G , RNA , Animais , Camundongos , RNA/química , Grânulos de Estresse , RNA Mensageiro/genética , Neurônios/metabolismo
18.
ACS Sens ; 8(2): 923-932, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36740828

RESUMO

Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.


Assuntos
Ácidos Nucleicos , Nucleosídeos , Nucleosídeos/química , Nucleosídeos/metabolismo , Corantes Fluorescentes/química , Tiofenos , Fluorescência
19.
Bioorg Med Chem ; 81: 117208, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780807

RESUMO

GAA repeat expansion in the first intron of the frataxin (FXN) gene represses the transcription of FXN, and that induces Friedreich's ataxia (FRDA). Pyrrole-imidazole polyamides (PIPs) are the class of oligopeptide that targets double-stranded DNA with sequence selectivity. Previously, bromodomain inhibitors such as JQ1 conjugated with PIPs were reported to selectively increase transcription. Here, we report the synthesis of a compound that increases the transcription of FXN in cells derived from an FRDA patient. The compound was effective in lower (one tenth) concentration than the compound that previously reported. High concentration of the compound is toxic, but toxicity was reduced with a host-guest complex.


Assuntos
Nylons , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Nylons/farmacologia , Expansão das Repetições de Trinucleotídeos , Regulação da Expressão Gênica , Imidazóis/farmacologia
20.
Nano Lett ; 23(5): 2046-2055, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36688839

RESUMO

The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.


Assuntos
DNA Mitocondrial , Nanopartículas , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Transcrição Gênica , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...